TRACK: Keeping Track of Highly
Mobile Object

A Language-Level Proposal
Position Paper

Eric Jul
Professor I, IFl, University of Oslo
Bell Labs Ireland

What’s my point?

Emerald introduced object location as a
fundamental language concept and has
constructs for object mobility.

This proposal is for a language construct that
tracks object mobility in @ manner similar to
the Observer design pattern: applications can
be notified when an object has moved.

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

What’'s the Problem?

In the Cloud world, thin clients, exemplified by
smartphones, move along the edge of the

cloud.
Applications running on the client may want to

handle the change of location of the client,
e.g., a gaming client may want to reconnect to

the closest gaming server in the cloud, or a
tablet may want to react to entering the office

or its home.

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Specific Problem

How are objects to be notified that they or another
object has moved?

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

The Simple Brute Force Solution

Polling:

oldloc <- locate X
while oldloc == locate X do /* nothing */
act on the new location

Inefficient
May miss moves

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Notification Based

Better solution:

Underlying system that performs the move
notifies interested parties of each move.

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

How are these Notifications Passed
to the Language Level?

There is no inherent way to do so!

Solutions:
— Library function
— Language construct

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Library Function

Establish a thread to await a change:
thread
newlLoc = track.awailit (X)
act on new location ..
end thread

But this just pushes problem into the library — it
is still black magic seen from the language
viewpoint.

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Language Construct

Will add a language construct to Emerald.

First, a short review of the Emerald language.

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Emerald OO language

Emerald is an OO language:

 “Pure” OO like Smalltalk — all data represented as
objects (no primitive types)

Algol-family syntax (statements are NOT objects)
Process concept (threads)
Synchronization (Hoare monitors)

Conformity based type system (worth several talks in
itself)

Like Java, but simpler

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Distribution features

Concept of location: A node is merely a machine (within
a semi-closed network)

Mobility: move X to Y

Attachment allows groups to be moved
Location: 1loc <- locate X

“Remote” object invocation

Checkpoint: stable version to disk

Node failure: failure handler, unavailability
Immutable objects (instead of primitives)

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Example: Kilroy

const Kilroy == object Kilroy

process
Var s Integer <- 0

var myNode: Node <- locate self

var myList: Nodelist

var remoteNode: Node

myList <- myNode.getActiveNodes

for (1 <= 0; 1 < myList.upperbound; 1 <- 1+1)
remoteNode <- myList (i) $theNode
move Kilroy to remoteNode

end loop

end process

end Kilroy

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

The TRACK Construct

track X notifying Y

This asks that the underlying system invokes Y
each time X has moved.

Analogous to the Observer design pattern.

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Tracker Object Interface

objecttype notifiable
op ObjectMoved[Any a, Node n, Time t]
op ObjectAppearsUnavailable[Any a, Time t]
op ObjectAppearsAvailable[Any a, Time t]

end notifiable

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Quitting Tracking

detrack X from Y

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Implementation

* Add a list of tracker objects to the tracked
object

* After every move: notify each tracker

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Fault Tolerance

* Maintain a list of tracked objects with each
tracker object.

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Garbage Collection Considerations

* Use weak reference from tracker object to
tracked object — trackers should not keep
tracked object alive.

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Modelling Node Mobility

Whole nodes that migrate, e.g., smartphones
moving can be modelled by tracking the special
Node object associated with each Node.

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

Conclusion

A new language construct for tracking mobile
objects.

Is model of Node mobility the right one?

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

www . emeraldlanguage . org

July 2nd, 2013 TRACK: Keeping Track of Highly Mobile Objects

